Synthesis of Novel C_2-Symmetrical Bidentate Phosphoramidite Ligands for Rh-catalyzed Asymmetric Hydrogenation of β-(Acylamino)acrylates

Qing Heng ZENG1,2, Xiang Ping HU1, Xin Miao LIANG1, Zhuo ZHENG1*

1Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023
2Graduate School of Chinese Academy of Sciences, Beijing 100039

Abstract: Two new C_2-symmetrical bidentate phosphoramidite ligands were synthesized and employed in the Rh-catalyzed asymmetric hydrogenation of β-(acylamino)acrylates, up to 89% ee with full conversions was obtained.

Keywords: β-Aminoacid, phosphoramidite, 1,2-diphenylethylenediamine, Rh-catalyzed asymmetric hydrogenation, β-(acylamino)acrylates.

Enantiomerically pure β-amino acids and their derivatives are especially attractive due to their vital importance for biochemical and medicinal applications1. One of the most convenient paths to β-amino acids involves the asymmetric hydrogenation of the corresponding prochiral substrates such as β-(acylamino)acrylates. Although this approach has been widely used for the preparation of α-amino acids, the synthesis of β-amino acids by the catalyzed asymmetric hydrogenation has turned out to be more problematic$^{2-4}$. Therefore, the development of novel catalyst system with properties superior to their predecessors is still needed. Recently, monophosphoramidites have been found to show excellent enantioselectivity in the Rh-catalyzed asymmetric hydrogenation of β-(acylamino)acrylates5,6. To the best of our knowledge, however, no bidentate phosphoramidite ligands have been described for this catalytic reaction. With this context, we now report the use of two new C_2-symmetrical bidentate phosphoramidite ligands 1 derived from 1, 2-diphenylethylenediamine and 1, 1'-bi-2-naphthol in

![Ph](image)

$\text{(S}_1, \text{S}_2, \text{S}_3, \text{S}_4)\text{-1a}$

$\text{(S}_1, \text{S}_2, \text{S}_3, \text{S}_4)\text{-1b}$

*E-mail: Zhengz@dicp.ac.cn
Scheme 1 Synthesis of bidentate phosphoramidite ligands (Sc′, Sc′, Sa′, Sa′)-1a and (Sc′, Sc′, Ra′, Ra′)-1b

Reagent and conditions: (a) HCO₂Et, 50 °C; (b) LiAlH₄, THF, 0 °C; (c) (R)- or (S)-4-chloro-3, 5-dioxa-4-phosphacyclohepta[2, 1-α; 3, 4-α′]dinaphthalene, toluene, 0 °C to rt

Starting from (S, S)-1, 2-diphenylethylenediamine 2, the target ligands were synthesized through a three-step procedure as outlined in Scheme 1. Initially, the formylation of (S, S)-1, 2-diphenylethylenediamine 2 was performed by the treatment of 2 with HCO₂Et at reflux temperature in quantitative yields. The subsequent reduction of 3 with LiAlH₄ in THF at 0 °C gave the corresponding N,N'-dimethyl-1,2-diphenylethylenediamine 4 in 78.1% yields. (S, S)-4 was then treated with (S)- or (R)-1, 1'-bi-2-naphthol-derived chlorophosphites in toluene at 0 °C to give the target ligands (Sc′, Sc′, Sa′, Sa′)-1a or (Sc′, Sc′, Ra′, Ra′)-1b in nearly quantitative yields.

With these new bidentate phosphoramidite ligands in hand, we then examined their efficiency in the Rh-catalyzed asymmetric hydrogenation of β-(acetylamino)acrylates (Scheme 2). The reaction was performed in CH₂Cl₂ at room temperature under a H₂ pressure of 10 bar in the presence of 1 mol% catalysts prepared in situ from Rh(COD)₂BF₄ and 1.1 equiv. of chiral ligand, and the results are summarized in Table 1.

Table 1 Rh-catalyzed asymmetric hydrogenation of β-(acetylamino)acrylates 5

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Substrate</th>
<th>Conv. (%)</th>
<th>Ee (%)b</th>
<th>Config.c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S,S,S,S)-1a</td>
<td>(E)-5a: R¹= Me, R² = Et</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>(S,S,R,R)-1b</td>
<td>(E)-5a: R¹= Me, R² = Et</td>
<td>86</td>
<td>89</td>
<td>R</td>
</tr>
<tr>
<td>3</td>
<td>(S,S,R,R)-1b</td>
<td>(Z)-5a: R¹= Me, R² = Et</td>
<td>45</td>
<td>76</td>
<td>R</td>
</tr>
<tr>
<td>4</td>
<td>(S,S,R,R)-1b</td>
<td>(E)-5b: R¹= Et, R² = Me</td>
<td>93</td>
<td>86</td>
<td>R</td>
</tr>
<tr>
<td>5</td>
<td>(S,S,R,R)-1b</td>
<td>(Z)-5b: R¹= Et, R² = Me</td>
<td>98</td>
<td>79</td>
<td>R</td>
</tr>
<tr>
<td>6</td>
<td>(S,S,R,R)-1b</td>
<td>(E)-5c: R¹= i-Pr, R² = Me</td>
<td>100</td>
<td>89</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>(S,S,R,R)-1b</td>
<td>(Z)-5c: R¹= i-Pr, R² = Me</td>
<td>100</td>
<td>70</td>
<td>S</td>
</tr>
<tr>
<td>8</td>
<td>(S,S,R,R)-1b</td>
<td>(Z)-5d: R¹= Ph, R² = Et</td>
<td>100</td>
<td>75</td>
<td>S</td>
</tr>
</tbody>
</table>

a Substrate/Rh/L* = 1/0.01/0.011, H₂ (10 bar), solvent = CH₂Cl₂, room temperature.

b Conversion and enantiomeric excesses were determined by GC using a CP-Chiralsil-L-Val capillary (0.25 mm x 30 m) column.

c The absolute configuration was determined by comparing the GC retention times with GC data in the literature.
Initially, ligand (\(S_c, S_c, S_a, S_a\))-1a was used in the Rh-catalyzed asymmetric hydrogenation of (E)-5a, however, no hydrogenation product was detected even after 24 hours (entry 1). When its diastereoisomer (\(S_c, S_c, S_a, S_a\))-1b was employed in this reaction, an ee-value of up to 89% with 86% yield was obtained (entry 2). We then selected the ligand (\(S_c, S_c, S_a, S_a\))-1b for further study of this reaction. A variety of \(\beta\)-alkyl-\(\beta\)-(acetylamino)acrylates were undertaken to examine the efficiency of this catalyst system. All substrates were hydrogenated in moderate to good enantioselectivity. In most cases, the hydrogenation of (E)-\(\beta\)-(acetylamino)acrylates exhibited higher enantioselectivity than the corresponding (Z)-isomers. The highest enantioselectivity of 89% ee with full conversions was obtained in the hydrogenation of (E)-5d (entries 2, 4, 6 vs entries 3, 5, 7). Ligand (\(S_c, S_c, S_a, S_a\))-1b also showed high catalytic activity in the hydrogenation of \(\beta\)-phenyl-\(\beta\)-(acetylamino)acrylates 5e, however, the enantioselectivity was moderate (75% ee) (entry 8).

In conclusion, we have prepared two new bidentate phosphoramidite ligands. They showed good enantioselectivity (89% ee) was obtained in the Rh-catalyzed asymmetric hydrogenation of \(\beta\)-(acetylamino)acrylates. Further modification and application of these ligands are still in progress.

Acknowledgments
The authors would like to thank the National Natural Science Foundation of China (No. 20472083) for financial support of this work.

References and Notes
9. Selected data for compound (\(S_c, S_c, S_a, S_a\)) \(\beta\)-1a: \([\alpha]_D^{25} +161\) (c 0.3, CHCl3); \(^1\)H NMR (CDCl3, \(\delta\) ppm): 1.63 (d, 3 H), 2.34 (d, 3 H), 3.73-3.80 (m, 2 H), 6.58-7.89 (m, 34 H); \(^{31}\)P NMR (CDCl3, \(\delta\) ppm): 144.9. Selected data for compound (\(S_c, S_c, S_a, S_a\)) \(\beta\)-1b: \([\alpha]_D^{25} -101\) (c 0.3, CHCl3); \(^1\)H NMR (CDCl3, \(\delta\) ppm): 1.91 (s, 3 H), 1.94 (s, 3 H), 3.67-3.74 (m, 2 H), 6.56-7.93 (m, 34 H); \(^{31}\)P NMR (CDCl3, \(\delta\) ppm): 145.5.

Received 25 October, 2005